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The axial and azimuthal components  of  the shear rate on the wall of  the outer fixed cylinder of  a pair 
of  concentric cylinders with the inner cylinder rotating was measured using a three-segment electro- 
diffusion probe. The axial distribution of  the components  was found by sweeping vortices past  the 
probe by means of  a small axial flow. A nonzero axial shear rate component  indicated the onset of  
Taylor vortices. Azimuthal waves on the vortices caused fluctuations of  both  components.  The 
instabilities were measured in two geometries characterized by R1/R2 = 0.84 and 0.7. The probe 
was calibrated in the same apparatus with R1/R2 = 0.94. The Stuart theory for the growth of  vortex 
velocity with angular velocity agrees well with the amplitude of  the fundamental  mode  measured with 
R1/R2 = 0.84. Qualitative agreement was found with the numerical results of  Fasel and Booz, 
especially between the axial shear rate component  measured with R1/R2 = 0.7 and the vorticity 
calculated for R1/R 2 = 0.5. 

1. Introduction 

The nature of the transition between laminar flow and 
fully developed turbulence is still poorly understood. 
Due to the complexity of this problem, it is con- 
venient to confine investigations of transitional flows 
to situations with an extended region of transition. 
The welt known Taylor-Couette flow realized 
between concentric rotating cylinders is the best and 
most studied situation. This geometry is particularly 
appealing because experiments can be conducted on 
small closed systems. 

The steady laminar flow between concentric rotat- 
ing cylinders becomes unstable when the rotational 
speed of the inner cylinder is above a critical value. 
The other parameters (density, radius, gap width, 
speed of the outer cylinder), grouped in the Taylor 
number, also play a role in the instability. At the first 
transition, a new circumferential flow with super- 
imposed cellular, toroidal counter-rotating vortices 
replaces the original laminar Couette flow. 
Ultimately the vortices become stable and regularly 
spaced along the cylinder axis. At higher speed, a 
second transition occurs where periodic azimuthal 
waves are superimposed on the vortices. 

Rayleigh [1] established a simple criterion for 
inertial instability of inviscid fluids. According to 
this criterion the flow is stable if, and only if, 
the angular momentum increases monotonically 
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outward. Taylor [2] solved the linearized Navier- 
Stokes equations for small disturbances and narrow 
gap. The linear theory predicts the onset of Taylor 
vortices and their wavelength and states that the 
disturbances grow exponentially with time. Stuart [3] 
improved the analysis using non-linear instability 
theory for a narrow gap, R1/R 2 ---+ 1. Davey [4] 
solved the governing equations using a perturbation 
expansion technique and tabulated velocity ampli- 
tudes for the special cases R1/R2--+ 1 and 
R1/R2 = 0.5. Fasel and Booz [5] used an implicit 
finite-difference method to investigate the Taylor- 
vortex flow in a wide gap, R1/R 2 = 0.5, for large 
supercritical Taylor numbers. Their detailed analysis 
of velocity components, stream function, vorticity 
and pressure strongly supports the concept of an 
evolving jetlike structure when the Taylor number is 
increased. Spectral decomposition of the flow quanti- 
ties has shown that a relatively large number of higher 
harmonic components are required to resolve the 
strong changes of the flow field for large Taylor 
numbers. 

Taylor-Couette flow has also been investigated 
experimentally as indicated in the review papers by 
Friebe [6], Di Prima and Swinney [7] and Cognet [8]. 
The most frequently used methods are flow visualiza- 
tion and torque measurement. Unfortunately neither 
of these methods gives velocity distribution. 
Donnelly and Schwarz [9] measured the radial 
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component of the velocity field at the outer cylinder by 
the ion conduction technique. These measurements 
were only relative, that is, it was difficult to obtain 
absolute values. Snyder and Lambert [10] used a 
thermistor anemometer embedded in the inner 
cylinder for the measurement of the shear rate. This 
method is incomplete in the following aspects. At 
small Peclet number the sensitivity of the anemometer 
to the velocity field is low. Only about 10% of the total 
energy input is transmitted by the anemometer to the 
fluid and hence used for the shear measurement. The 
other part of the energy is transmitted into the cylinder 
and is then lost in the fluid. The excess temperature of 
about 6 °C may cause thermal instability of the flow. 
For measurement of the axial dependence of the shear 
rate, Snyder and Lambert [10] swept the Taylor cells 
past the thermistor using a small axial flow. Gollub 
and Freilich [11] measured the radial velocity compo- 
nent by the laser Doppler technique. Eisenberg et al. 
[12] and Mizushina et al. [13] used the electrodiffusion 
technique for measurements of the local mass transfer 
rate on the surface of the outer cylinder. Cognet [14] 
and Bouabdallah and Cognet [15] used the same tech- 
nique, but interpreted the results as shear rate. Using a 
simple probe they estimated the magnitude of the shear 
rate and studied the axial dependence of the spectral 
density of the fluctuations. Fenstermacher et al. [16] 
used the laser Doppler technique for spectral analysis 
of the radial velocity component in the azimuthal 
wavy flow regime. 

Due to limitations in the above mentioned measur- 
ing technique, only the absolute value of the shear rate 
or a single velocity component was measured. The 
only exception is the work of Muller et al. [17], who 
used two component laser Doppler velocimetry for 
the measurement of the onset of instability in visco- 
elastic Couette flow. However, they presented only 
purely elastic oscillations of the axial velocity com- 
ponent in a Boger fluid and no data in Taylor- 
Couette flow. 

It is convenient to study disturbances by the 
measurement of the local shear rate on the cylinder 
wall. In opaque liquids it is the only applicable 
method. To obtain more information about the flow 
field it is necessary to decompose the absolute 
value of the shear rate into axial and azimuthal 
components. 

The electrodiffusion method, based upon the 
measurement of the limiting diffusion current on a 
working electrode, is a very efficient method for the 
evaluation of shear stress or shear rate [12-15, 18]. 
Rectangular and circular probes [19, 20], composed 
of two parts separated by a thin insulation gap, were 
used for the measurement of the flow direction. The 
maximum angle resolution is 180 ° with bicircular 
probes [20]. The angle resolution with a square probe 
composed of four small square electrodes [21] is quite 
good, but the total current depends on the flow direc- 
tion. Recently developed three-segment circular 
probes [22-26] have a very good angular resolution 
in the whole interval 0-360 ° and the total current is 

independent of the flow angle. With this probe 
embedded in the wall of the outer cylinder it is 
possible to measure the azimuthal and axial com- 
ponents of the shear rate in Taylor-Couette flow 
simultaneously, without any interference with the 
flow. 

The advantages of the use of this probe in disturbed 
Couette flow will be shown in the present paper. The 
onset of Taylor vortices and azimuthal waves will be 
determined by computerized experiments. The axial 
distribution of the axial and azimuthal components 
of the shear rate will be measured by sweeping the 
fully developed vortices past the probe at different 
rotation speeds. 

2. Theory 

2.1. Three-segment electrodiffusion probes 

The measurement of the wall shear stress or shear rate 
by means of the limiting diffusion current is a well- 
known technique [13, 18, 19], based on the following 
principle. A two-electrode cell consisting of a small 
working electrode and a larger auxiliary electrode is 
used and the solution contains electroactive species 
and excess supporting electrolyte. The velocity field 
very close to the working electrode controls the 
species transport and, thus, the measured current. In 
this region the velocity field can be approximated by 
a linear dependence on the normal distance from the 
surface, y, with the shear rate, 7, a coefficient of 
proportionality. If the Peclet number (Pe = 7LZ/D)  
is sufficiently high, then the current density obeys 
the relation 

i = Kx 1/3 (1) 

where x is measured from the electrode leading edge, 
K depends on the number of electrons n involved in 
the reaction of one ion. 

Now, 

K = nFc°D2/3 (7/9)1/3 (2) 

F(4/3) 

where F is the Faraday constant, c o is the bulk active 
species concentration, D is the diffusion coefficient, 
and 7 is the shear rate. Integration of Equation 1 
yields the total current for a circular electrode of 
radius R, 

I = 4.007 K R V3 (3) 

and for a rectangular electrode with length L and 
width W, 

I = 1.5 K W L  2/3 (4) 

Hence the total current depends on the electrode 
length to the power 2/3. Segmented electrodes make 
use of this fact for the resolution of the flow direc- 
tion. A circular electrode composed of three isolated 
segments is shown in Fig. 1. The principle of the 
flow angle resolution is as follows. The current 11 
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F!g. 1. Three-segment electrodiffusion probe. 

through the upstream part L1 of the strip L is greater 
than the current/2 through the downstream part L2. 
Making use of Equation 4 for the current ratio 

11/12 = I l l (  I -- II) = L21131( L2/3 - L~ 13) (5) 

For example, for L1 ---- L2 it follows that I1 = 1.5912. 
Hence the current at a segment of a circular electrode 
depends on the flow angle ¢ and "7, whereas the sum of 
the currents depends only on "7. For calculation of the 
flow direction it is convenient to normalize the 
segment currents by their sum. Then the normalized 
currents depend only on ¢. We term the dependencies 
Ij/EIk =j~(¢) the directional characteristics. More 
information about three-segment probes can be 
found in [23-27]. As the three-segment probes manu- 
factured up to the present are not geometrically 
perfect, it is necessary to calibrate them. The most 
frequently used method is to adjust the flow angle 
by turning the probe in a viscometric flow field and  
measure the segment currents. The measured 
dependence of the normalized segment currents on 
the flow angle are then approximated by Fourier 
series. As the electrode surface area and the diffusion 
coefficient are not exactly known, the dependence I-"7 
should be measured in the same solution as that used 
in the experiment. Another reason for this recommen- 

dation is the parallel reaction of dissolved oxygen 
which increases the measured current above the value 
corresponding to the concentration of the intended 
electroactive species. 

2.2. Velocity distribution in Taylor-Couette flow 

For two concentric rotating cylinders, with r, 0, z as 
the cylindrical coordinates and Ur, uo, Uz the corre- 
sponding velocity components, the flow has axial sym- 
metry and is, therefore, independent of 0. When the 
rotational speed of the inner cylinder is above a criti- 
cal value, laminar flow is no longer stable and disturb- 
ances appear which ultimately take the form of 
cellular, toroidal vortices, regularly spaced along the 
axis, z, of the cylinders. A Taylor vortex and the coor- 
dinate system are shown in Fig. 2. The velocity com- 
ponents of a stable vortex are periodic functions of z: 

Pr(r, Z) = Z #)rk(r) COS k[oLz -'1- ~Ork(r)] (6) 
k 

uo(r,z) = -~o(r) + Z Uok(r) cosk[c~z + g)ok(r)] (7) 
k 

yz(r, z) = ~ Uzk(r) sin k[az + ~Ozk(r)] (8) 
k 

According to the numerical solution [5] the phases 
~Oik(r ) have either of the values O, 7r/k, 

Under the assumption that the mean velocity N(r) 
is the same as in laminar Couette flow, linear theory 
[28] predicts the critical Taylor number and wave 
number a. Nonlinear theory [3, 4] takes into account 
the distortion of the mean flow by disturbances. 
Under the assumption that a is known from linear 
theory, Stuart [3] found the dependence of the funda- 
mental mode, i.e. l]rl(r), Uol(r ) and l.,zl(r ) on the 
Taylor number. Davey [4] calculated the amplitudes 
Urg and UOk for k = 1,2, 3 by a perturbation expansion 
technique. Fasel and Booz [5] obtained a complete 
velocity field Ur(r,z), uo(r,z ) and Uz(r,z) including 
the pressure and vorticity distribution by an implicit 
finite difference method. 

2 

I /  L 

R2 \ ~ ~. --~ _ _.....I><~ Vz v#, 

j Fig. 2. Structure of a Taylor vortex. (1) stream 
tube and (2) three-segment electrodiffusion 
probe. 
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Under the assumption that the velocity field close to 
the electrode can be linearized and that the stream- 
lines are almost parallel lines, the shear rate measured 
by a three-segment electrodiffusion probe can be 
decomposed into two components [23-26]. At the 
wall of  the outer fixed cylinder, these components 
can be calculated from the velocity components, 
Equations 7 and 8. 

7 o ( z )  = r: 2: + E 70k cos< z +  0k(R2)l 
k 

( 9 )  

7z(Z)  - -  O~z = 
Or r=R2 

where 

~ % k s i n k [ a z  +~Pzk(R2)] (10) 
k 

= 0N0 (I la) 
Of r=R2 

Ou°k ( l i b )  
70k-~- Or r=R2 

0Uzk (1 lc) 
%k = Or r=R2 

The phases ~ik(R2) were found to be zero [5]. 
Fasel and  Booz [5] calculated the vorticity at the 

walls of the inner and outer cylinders from 

~2(r,z) = _Ouz (12) 
Of r=R1,R 2 

Hence the axial shear rate component,  %(z), is equal 
to the vorticity, f~(R2, z). 

It follows from Equations 9-11 that the theoretical 
predictions for the velocity field can be checked by 
measurement of  70 and %. On the other hand the 
measured distribution of 7o and % can be used as 
boundary conditions for calculation of  the velocity 
distribution. 

3 .  E x p e r i m e n t a l  d e t a i l s  

The fluid was contained between two plexiglass 
cylinders. The outer fixed cylinder had a radius, R2, 
of  30.6mm, and the inner interchangeable cylinders 
had radii, R1, of  28.8, 25.6 and 21.4mm. The corre- 
sponding ratio ~ = R1/R2 was 0.94, 0.84 and 0.7. 
The gap between cylinders had a length of 140mm. 
Assuming that a vortex has a height equal to the 
width of  the gap, 28 and 15 vortices could be accom- 
modated in the apparatus with ~7 = 0.84 and 0.7, 
respectively. The inner cylinder was coupled by a 
flexible tube with the shaft of a gear box which was 
mounted on an electromotor with adjustable rate of  
rotation. Two endless screws in the gear box 
produced a rotation reduction ratio of 1:121. The 
rotation rate was measured by means of  a tachometer 
coupled to the electromotor shaft. The rotation rate of  
the inner cylinder could be adjusted in the range 
0.6-36rpm. 

The three-segment electrodiffusion probe was made 
in house. Three platinum wires with a diameter of  
0.5mm were pulled simultaneously through a wire- 
drawing die, starting with a die diameter of 1 mm 
and finishing with 0.5 mm. This caused the originally 
circular wires to take a cross-section shape as shown 
in the segments 1, 2 and 3 in Fig. 1. The wires were 
then coated electrophoretically with a deposit of a 
polymeric paint and glued together with Araldite. 
After soldering the connecting cables, the probe was 
glued with Epoxide Resin (product of Buehler) into 
a stainless steel tube with a tip diameter of  3 mm. 
The face of  the tube was then polished with emery 
paper of  a grit size 15 gin. The stainless steel tube 
served as anode. The three-segment electrodiffusion 
probe was flush mounted into the wall of the outer 
cylinder at a distance of  65 mm below the top of the 
inner cylinder. 

The test fluid was a 10molm -3 equimolar potas- 
sium ferri/ferrocyanide aqueous solution with 
100molto -3 K2SO 4 as supporting electrolyte. The 
density of  the solution was 1020kgm -3 and the 
kinematic viscosity was 1.02 x 10 .6 m 2 s -1 at 22 °C. 

Vortices were swept over the probe using a low axial 
flow generated by a driven syringe. The mean velocity 
was 0.07rams q in the 5ram gap and 0 .09mms -1 in 
the 9.2mm gap. The corresponding Reynolds 
number and the shear rate of the superposed axial 
motion were smaller than 1.8 and 0.1 s -1, respectively. 

The probe was calibrated in laminar Couette flow 
generated by the largest cylinder. The electro- 
chemical system was initially checked by measuring 
polarization curves at different shear rates, see Fig. 
3. The curves exhibited good plateaux. During 
calibration the shear rate was adusted in the range 
0.85 to 36s -1. A potential drop of - 0 . 6 V  was then 
imposed between the electrodes. As the Peclet 
number is too small, due to low shear rates, the experi- 
mentally found dependence I - 7  does not obey the 
power law with the theoretical power 1/3, see Fig. 4. 
Hence the empirical relation 

I = 1.831 71/3 q- 0.4607 -1/3 - 0.1527 -1/6 (13) 

was used for the evaluation of  7(s -1) from the 

i i i i i i 
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Fig. 3. Polarization curves at different shear rate. 
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Fig. 4. Dependence of total current on shear rate. (a) Equation 13, 
and (b) power law dependence I = K3," with n = 0.31 and K = 1.99. 

measured total current I (gA).  A similar relation was 
proposed by Dimopoulos  and Hanrat ty  [29], how- 
ever here the multiplying coefficients were obtained 
by a least squares fit of  the experimental data. 

The directional characteristics of  the probe were 
obtained in the following way. By turning the probe 
around its axis in laminar Couette flow, the flow 
angle was adjusted in steps of  15 ° . For  each angle 
the three segment currents were measured and the 
total current, I, and normalized currents, /j, were 
calculated by dividing the currents by the total 
current. The dependencies of  the normalized currents 
on the flow angle q~ were fitted by Fourier series, see 
Fig. 5. The directional characteristics were practically 
independent of  the shear rate. For  the measurements 
the reference radius of  the probe was chosen at 270 ° . 
In other words the flow angle 270 ° pointed in the 
azimuthal direction. 

The calibrations and measurements were fully com- 
puterized. A 80486 computer was connected by means 
of an A/D and D/A board with an electrodiffusion 
analyser. The home made analyser supplied the 
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Fig. 6. Phase diagram %-3'o in the narrow gap, rl = 0.84. wlwc: (1) 
-1; (2) -1.04; (3) -1.07; (4)-1.11; (5) -1.18; (6) -1.26; and (7) 
-1.30. 

same voltage on all the segments and measured the 
limiting currents. The sampling frequency of  the 
segment currents was 2000Hz. The instantaneous 
values of  7o and % were calculated on-line and their 
mean values and standard deviations, together with 
current time, were recorded every 0.9 s. A phase plot 
on the screen with 7o on the abscissa and % on the 
ordinate was used for investigating disturbances in 
the Couette flow, see Figs 6 and 7. A point with coor- 
dinates 7o and % is the end point of  a vector parallel 
with the flow direction having magnitude equal to 
the shear rate. In laminar flow % is zero and the 
corresponding points lie on the abscissa. With the 
exception of  the source and sink, the secondary 
motion manifests itself by a nonzero %. I f  the flow 
is steady, the point does not move. Any closed line 
corresponds to a pair of  steady, fully developed 
vortices. When more than two vortices were swept 
over the probe by the mean axial flow, identical 
curves were obtained. Hence the neighbouring 
vortices have the same velocity distribution. The 
small spiral curve in the middle of  Fig. 6 shows the 
onset of  Taylor vortex. It  expresses the time 
evolution of  the growing vortex towards state 1 
(~v/wc = 1, Fig. 6). 

4. Results and discussion 

As the time histories of  %(t) and "/o(t) were recorded 
during one experiment it was possible to calculate 

10 

5 6 

50 
-5 

-10 

Fig. 5. Directional characteristics of three-segment electrodiffusion Fig. 7. Phase diagram %-'7o in the wide gap, r 1 = 0.7. W/Wc: (1) 
probe. -3.33; (2) -4.17; (3) -5.00; (4) -5.83; (5) -6.67; and (6) -7.50. 
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%(z) and 3`o(Z) by means of  the known sweeping 
velocity. Typical dependencies are shown in Figs 8 
and 9 for ~7 equal to 0.84 and 0.7. The origin is 
arbitrary and depends on the relative position of the 
vortex and probe at the start of measurement. The 
scales of the ordinates and abscissas depend on the 
shear rate and wavelength of  each vortex. The mean 
values of  the shear rate components are marked by 
thin horizontal straight lines. The value of  ~ and 
the wavelength are given at the appropriate axis. 
The value Of~z should be equal to the sweeping shear 
rate, i.e., 0.09 s -~ for ~ -- 0.84 and 0.06 s -1 for r /=  0.7. 
The number in the upper left corner of  each diagram 
represents the angular velocity normalized by the 
angular velocity of  the onset of  Taylor vortices, 
ca/Wc. The critical velocity ca c was equal t o  

0.785rads -] for r / = 0 . 8 4  and 0.35rads -1 for 
r /=  0.7. The dashed and dotted curves present the 
first harmonics. The second harmonics are denoted 
by the thin curves. At co/a~ c = 1.3 azimuthal waves 
appeared on Taylor vortices in the small gap. They 
manifested themselves by periodical dependencies of  
3'o and % on time. Because the averaging time of  
one measurement (0.9s) is smaller than the wave 
period (approximately 4.6s), periodic fluctuations 
appeared in the phase diagram and dependencies 
3`o(Z) and %(z), see Fig. 6 and the last diagram in 
Fig. 8. For  a narrower gap, ~7 = 0.908, Cognet [14] 
obtained a value of 1.2. No azimuthal waves occur 
even at w/a3o = 9.2. For  zl = 0.5 Snyder and Lambert  

z]mm 
8.6 Fig. 8. Dependence of % and "Y0 on z for 

~7 = 0.84. 

[10] found the Taylor vortices steady even at 
ca/w c = 10. 

From the theory of  Taylor vortices it follows that 
the axial velocity is zero and changes direction in the 
planes separating neighbouring vortices. The radial 
velocity in these planes is directed either towards or 
away from the outer wall. Hence the radial velocity 
creates either a source or sink at the outer wall. The 
azimuthal velocities near the outer wall have maxima 
in the planes of  the source and minima in the planes of  
the sink. These facts were confirmed by numerical 
study [5], see Fig. 7 (c) (d) and (e). Hence the radial 
gradient Of the azimuthal velocity has a maximum in 
the source and minimum in the sink. The radial 
gradients of  the axial velocity are zero in both source 
and sink. 

As the numerical study [5] was done for rl = 0.5, 
only qualitative comparison with our results is 
possible. From the distribution of azimuthal velocity 
shown in Fig. 7(d) of  [5] it follows that the radial 
gradient of  the azimuthal velocity, 3'0, has a maxi- 
mum in the source and a minimum in the sink. This 
is in agreement with the results shown in Figs 8 and 
9, where the maxima and minima of  3'o correspond 
to % = 0 .  There is also qualitative agreement 
between the forms of %(z) in Fig. 9 and the vorticity 
ft(R2, z) shown in Fig. 8(j) of  [5]. Figure 9 documents 
great changes of  the flow field with increasing Re and 
a jet like, or in other words, boundary layer character 
of the flow at high rotation rates. Whereas %(z) and 
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70(z) have nearly sinusoidal form just beyond the 
critical rotation rate, they exhibit more pronounced 
peaks with increasing rotation rate. The %(z)' peak& 
are not in the central plane of the  vortex, but they 
are closer to the source, the higher the rotation rate. 

The amplitudes %~ and 70k of harmonics, defined in 
Equations 9-11, were found by Fourier decomposi- 
tion of the measured data. Amplitudes of the funda- 
mental mode, first harmonic (k = 1), and higher 
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harmonics up to the order 4 are shown in Fig. 10 
for ~/= 0.84. Series with terms of order k--= 2 are 
sufficient for good fit, because the amplitudes of the 
third harmonic are about 1% of the first ones. The 
higher harmonics are not significant until the appear- 
ance of azimuthal waves. There is very good agree- 
ment with the Stuart theory [3]. The significance of 
the harmonics in the wide gap, r /=  0.7, is obvious 
from Fig. 11. Two regions can be distinguished with 
different slope. The break point is at about 
w/~c - 1 = 1, and corresponds approximately to the 
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Fig. 11. Amplitude growth of fundamental  mode and harmonics for 
77 = 0.7. For  legend see Fig. 10. 
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vortex with the smallest wave length, A = 12.6mm, 
shown in Fig. 9. At smaller angular velocity, only 
the second harmonics, %2, having a value of 10% of 
the fundamental mode, is not negligible. At higher 
rotation rate higher harmonics become significant. 
Gollub and Freilich [11] also found a break point, 
but only the slope of the fundamental mode 
amplitude was greater at greater angular velocity. 
For ~ = 0.7 the theory [3] does not fit the experi- 
mental data at all because it was derived for a narrow 
gap. 

For comparison of 7zk with the harmonics of 
vorticity shown in Fig. 1 l(d) of [5], the harmonics 
%~ are plotted in semilogarithmic coordinates in 
Fig. 12. There is good qualitative agreement with 
the only exception being the third harmonic at small 
rotation rate. Its local minimum may be explained 
by the finite sensitivity of the probe. 

If the normal velocity component exists at the wall, 
the wall shear rate is not more homogeneous. The 
directional characteristics measured in the presence 
of the normal velocity component differs from that 
in a steady homogeneous flow [25, 30]. A parameter 
n was introduced which stands for the ratio of the 
maximum difference of the wall shear rate at the 
centre and boundary of a probe. The value of n varies 
between 1, this value corresponds to a flow with 
stagnation point on the probe boundary, and 0, corre- 
sponding to a homogeneous flow without normal 
velocity component. Because "/0 has finite values in 
the planes going through sources and sinks where 
the radial component is significant, n does not reach 
large values. The maximum of 0.12 was estimated 
for max(70) and % = 0, i.e in the source on the last 
diagram in Fig. 9. Because even this, in our experi- 
ments, exceptional value has only little influence on 
the directional characteristics, we used the directional 
characteristics measured in viscometric flow for 
evaluation of the flow direction. 

The above results show the convenience and 
reliability of the three-segment electrodiffusion probe 
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Fig. 12. Amplitude growth of fundamental mode and harmonics for 
r /= 0.7 as dependence on co/w c in semilogarithmic coordinates. 

for mapping of the shear rate components in Taylor- 
Couette flow. 

It is also intended to make more systematic 
measurements in non-Newtonian viscoelastic liquids 
[31] and fibre suspensions [32] and in time dependent 
wavy vortex flow. 

5. Conclusions 

Three-segment electrodiffusion probes are very 
efficient tools for measurement of the azimuthal and 
axial wall shear rate components in Couette flow 
with instabilities. Directional resolution is still 
accurate at very low shear rates of the order 1 s -1. 
The onset of Taylor vortices and azimuthal waves 
was identified by the computerized measuring 
system. Superposition of a small axial motion on the 
Taylor vortices makes it possible to infer the wave- 
length of the cells and the dependence of the shear 
rate components on the axial coordinate. 

The amplitudes of the axial and azimuthal shear 
rate measured with r / = 0.84 agree well with the 
Stuart theory for the growth of vortices in a narrow 
gap. 

There is qualitative agreement between the axial 
shear rate measured with ~ = 0.7 and the vorticity 
calculated by Fasel and Booz [6] for r/--0.5, and 
between the measured azimuthal shear rate and 
calculated azimuthal velocity. 
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